

Novità dal Meeting della Società Americana di Ematologia

Milano Teatro Dal Verme 2-3-4 Febbraio 2023

COORDINATORI

Angelo Michele Carella Pier Luigi Zinzani

BOARD SCIENTIFI

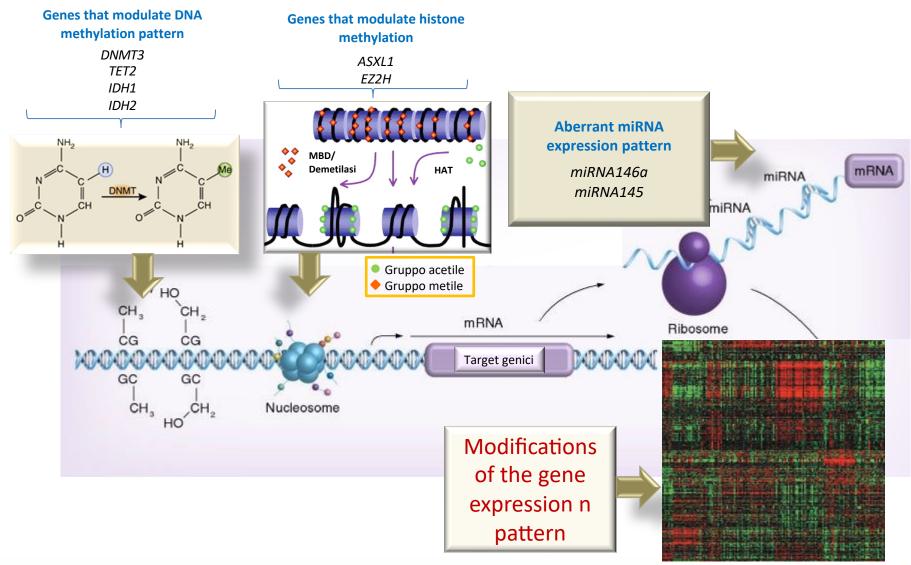
Paolo Corradini Mauro Krampera Fabrizio Pane Adriano Venditti

9° SESSIONE - SINDROMI MIELODISPLASTICHE

Stato dell'arte

Fabrizio Pane

Novità dal Meeting della Società Americana di Ematologia


Milano, 2-3-4 Febbraio 2023

DICHIARAZIONE Fabrizio Pane

Come da nuova regolamentazione della Commissione Nazionale per la Formazione Continua del Ministero della Salute, è richiesta la trasparenza delle fonti di finanziamento e dei rapporti con soggetti portatori di interessi commerciali in campo sanitario.

- Posizione di dipendente in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Consulenza ad aziende con interessi commerciali in campo sanitario (Incyte)
- Fondi per la ricerca da aziende con interessi commerciali in campo sanitario (*Novartis*)
- Partecipazione ad Advisory Board (*Incyte, Novartis, Janssen, BMS, GSK, Sandoz*)
- Titolarietà di brevetti in compartecipazione ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Partecipazioni azionarie in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Altro

Central Theme in MDS Pathogenesis: Somatic Mutation-Driven Methylator Phenotypes

Genetic Abnormalities in MDS

Translocations/ Rearrangements	Uniparental Disomy/ Microdeletions	Copy Number Change	Point Mutations
Rare in MDS	Rare; often at sites of point mutations	~50% of cases	Most common
t(6;9) i(17q) t(1;7) t(3;?) t(11;?) inv(3) idic(X)(q13)	4q - TET2 7q - EZH2 11q - CBL 17p - TP53	del(5q) -7/del(7q) del(20q) del(17p) del(11q) +8 -Y	Likely in all cases ~80% of cases have mutations in a known gene
Karyotype	Array CGH SNP Array	Karyotype/FISH Observed Free	Genotyping Sequencing
			UNIVERSITÀ DEGLI STUDI DI NAPO FEDERICO II

Comparison Between ICC and WHO Classification

PB;

ICC

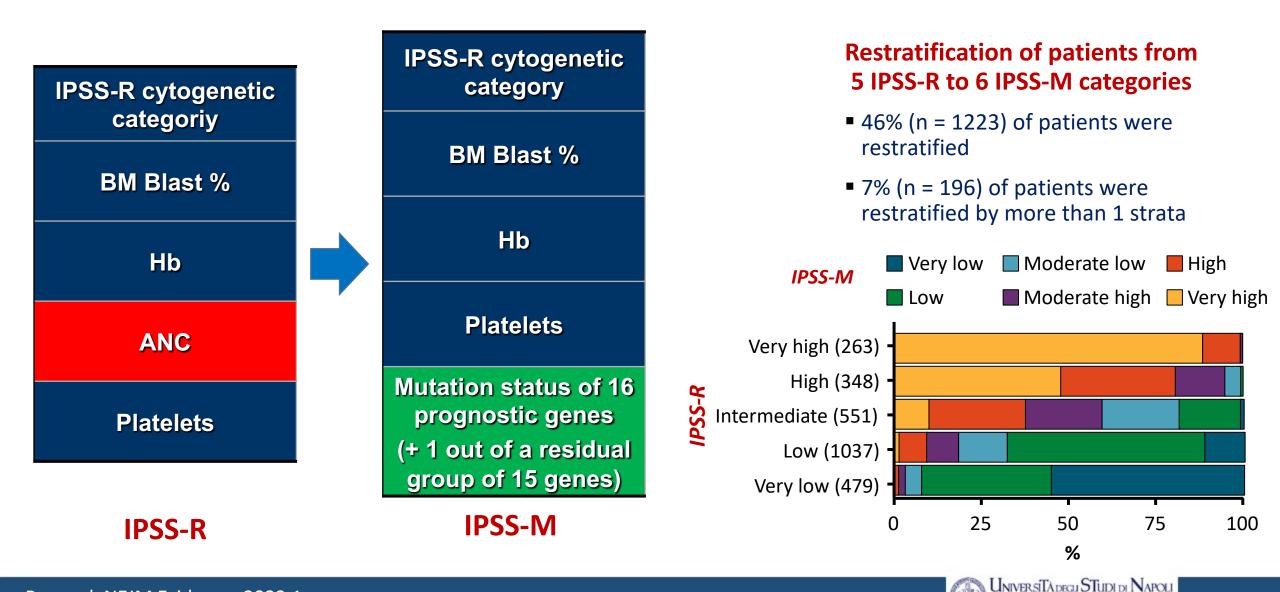
MDS with mutated <i>SF3B1</i> (MDSSF3B1)	<5% BM and <2% PB
MDS with del(5q) [MDS del(5q)]	
MDS, NOS - without dysplasia	
MDS, NOS - with single lineage dysplasia	
MDS, NOS - with multilineage dysplasia	
MDS with excess blasts (MDS-EB)	
MDS/AML	10%-19% BM or 5%-19% Auer rods (WHO)
MDS with mutated <i>TP53</i>	
MDS/AML with mutated TP53	

WHO

MDS with defining genetic abnormalities

- MDS with low blasts and SF3B1
- MDS with low blasts and isolated 5q deletion (MDS-5q)
- MDS with biallelic TP53 inactivation

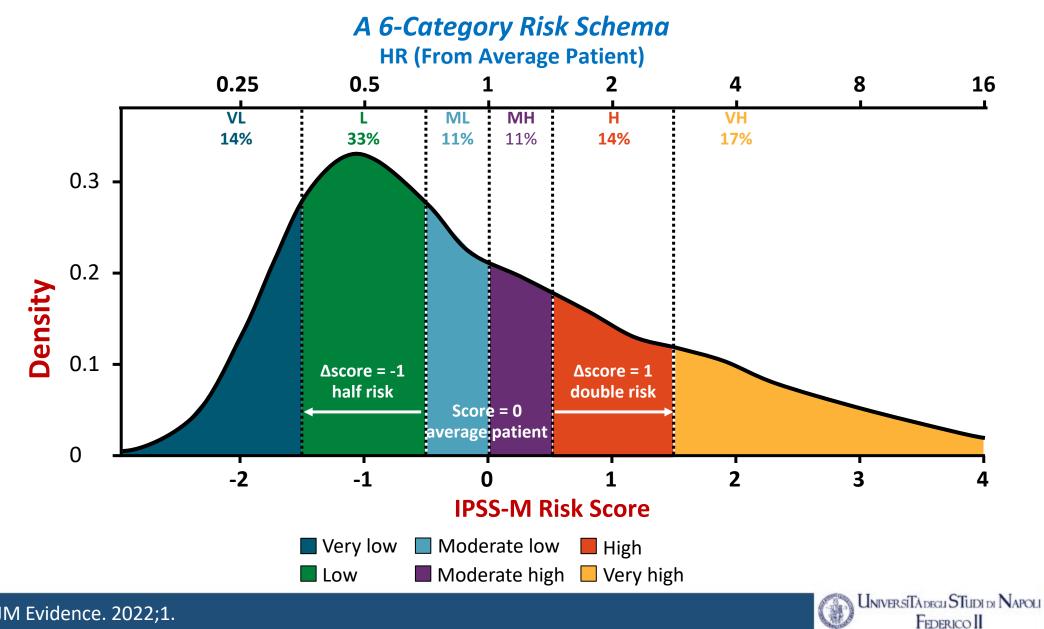
MDS, morphologically defined


- MDS with low blasts (MDS-LB)
- MDS, hypoplastic (MDS-h)
- MDS with increased blasts (MDS-IB)
 - MDS-IB1
 - MDS-IB2
- MDS with fibrosis (MDS-f)

Major Changes in the 5th Edition WHO Guidelines

- Inclusion of CH, CHIP, CCUS definition
- Unified cytopenia definition for CHIP, CCUS, and MDS
 - Hb <13 g/dL (male) <12 g/dL (female), ANC <1.8 x 10⁹/L, plt <150 x 10⁹/L
- MDS: myelodysplastic <u>neoplasms</u>
- 2 groups of MDS: genetically defined, morphologically defined
- Biallelic TP53 mutations supersedes del5q and SF3B1
- Hypocellular MDS recognized as a distinct subtype
- Childhood MDS separated into own section

From Revised-IPSS to Molecular-IPSS



E

FEDERICO II

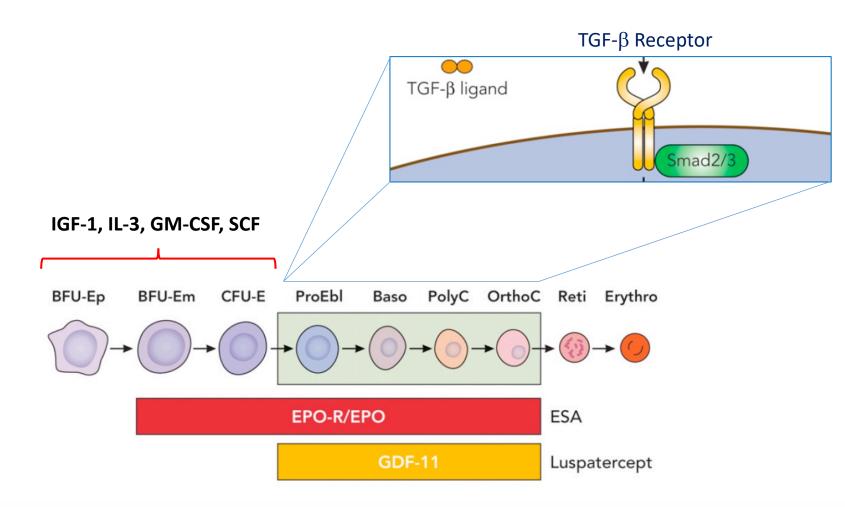
Bernard. NEJM Evidence. 2022;1.

IPSS-M Risk Categories

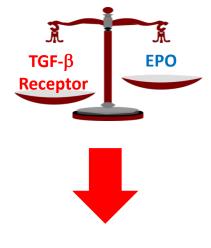
FEDERICO II

Bernard. NEJM Evidence. 2022;1.

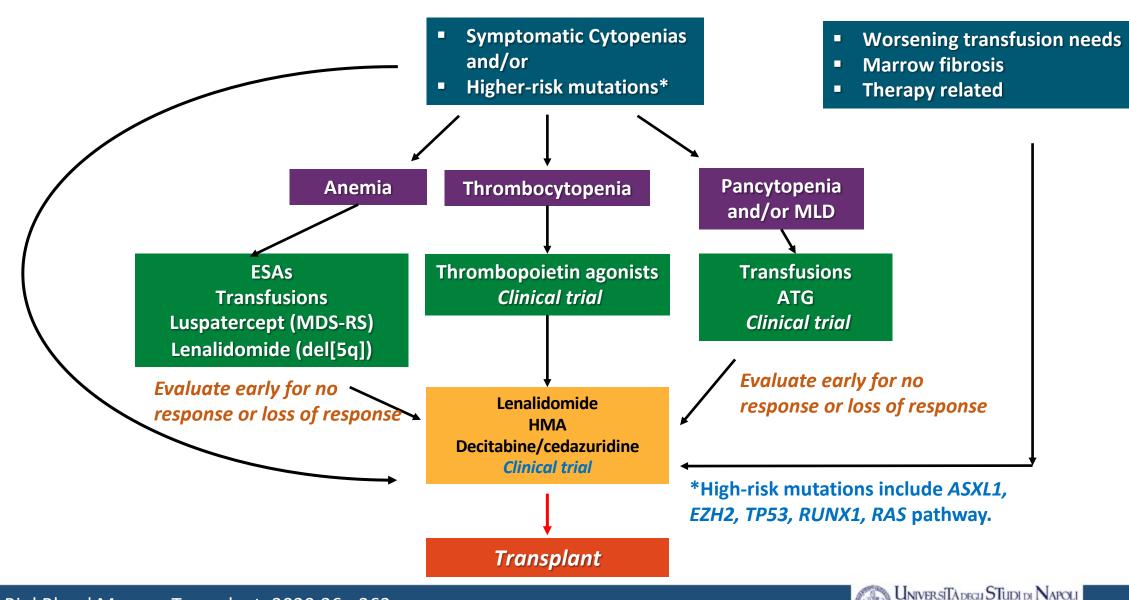
MDS Treatment Goals


- Lower-risk MDS
 - Maximize quality of life
 - Minimize transfusions
 - Minimize cytopenias and their consequences (eg, fatigue, functional impairment, cognitive impairment, infection risk, bleeding risk)
 - Attempt to reduce risk of progression and improve survival

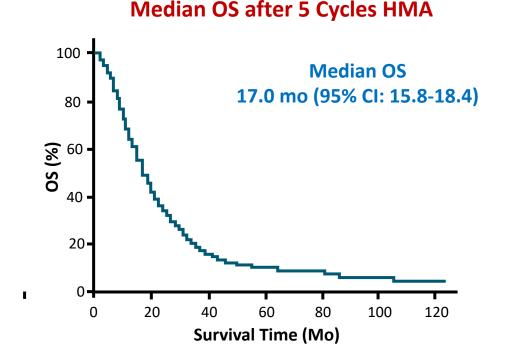
Higher-risk MDS


- Quality-of-life measures
- Delay progression to AML

Ineffective erythropoiesis in MDS through marrow inflammatory background


Inbalance of pro-apoptotic to anti-apoptotic signals at pro-erythroblast level

Ineffective erythropoiesis with expansion of progenitors and early precursors compartments


Lower-Risk MDS Treatment Paradigm Considerations

FEDERICO II

Jain. Biol Blood Marrow Transplant. 2020;26:e263.

The Dawn of the Precision Medicine Era for MDS

636 HR-MDS of all ages in the MDS Clinical Research Consortium who received HMA (median 5 cycles), 72% received ≥4 cycles. 68% received AZA.

Novel therapies for HMA-resistant/refractory MDS

Molecularly targeted agents:

- IDH1/2 inhibitors (eg, ivosidenib, enasidenib, FT-2102)
- Eprenetapopt
- H3B-8800
- FLT3 inhibitors (eg, gilteritinib)

Immunotherapies:

- Anti-PD1/PD-L1 antibodies
- Anti-CTLA4
- Anti-TIM3 (eg, sabatolimab)
- Anti-CD47 antibodies (eg, magrolimab)

Genetically agnostic small molecule inhibitors:

- Pevonedistat
- Venetoclax
- Glasdegib
- Rigosertib

Chemotherapy/epigenetic agents:

- CPX-351
- Novel HMA (eg, ASTX727, CC486, guadecitabine)
- HDAC inhibitors

9° SESSIONE SINDROMI MIELODISPLASTICHE F. PANE 09.10 Stato dell'arte F. PANE M.T. VOSO 09.20 Biologia e prognosi 09.40 Terapia delle sindromi mielodisplastiche P. MUSTO a basso rischio 10.00 Terapia delle sindromi mielodisplastiche V. SANTINI ad alto rischio 10.20 Discussione

